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FILTRATION OF FLUID IN CURVILINEAR LAYERS OF VARIABLE THICKNESS* 

I.A. AMIPASLANOV and G.P. CHEREPANOV 

An effective solution (in many cases in quadratures) of the boundary value problems 
of fluid filtration theory in thin curvilinear layers of variable thicknessisgiven. 
The main idea of the approach adopted is to replace the initial system of equations 
of two-dimensional filtration of fluid by another, simpler system of equations, 
equivalent to the first system within the limits of its accuracy. An example is 
given. 

1. General approach. Let us consider the filtration of an incompressible heavy fluid 
in a thin, curvilinear layer of porous material contained between two impermeable surfaces in 
three-dimensional space. We denote by Q and $ the Gaussian orthogonal coordinates of the mid- 
dle surface of the curvilinear layer, chosen in such a manner that the coordinate lines are 
the lines of principal curvatures of this surface. Further we denote by y the normal to the 
middle surface (so that afi~ form a right coordinate system), and by hthe layer thickness, 
the latter being a known function of a and fi. We shall assume that 

(1.1) 

Here A and Bare the coefficients of the first quadratic form of the middle surface in the 
coordinates a and B. 

Under these assumptions the equations of two-dimensional theory of filtration have the 
following form: 

8 (hu,) d (hue) 
da.+ag=o (1.2) 

Oa=-pA k (2 +r+ us=-$r(++PP+) (1.3) 

where p is the pressure of the fluid, L'~ and uB are the filtration rate components along the 
a and fi axes, ~1 is the dynamic viscosity of the fluid, k is the permeability of the porous 
material, p is the fluid density and 6 is acceleration due to gravity acting in the negative 
direction of the z-axis. The equation of the middle surface of the layer in the Cartesian 
ryz -coordinates has the form 

2 = 2 (a, B), y = Y(% 8). z = I (a. fi) (1.4) 

Substituting (1.3) into (1.2), we obtain a single equation for the function P @> B) 

Assuming that the derivatives (1.1) are small, we can write the expression for the layerthick- 
ness in the following form: 

h = h, i- E/Q (cc, B) (e 4 1) (1.6) 

where E is a small number, h, is a constant and h, is a known function of a and fi. 
The equations (1.2) and (1.3), and hence (1.5), hold only when the derivatives (1.1) are 

small. Near the boundaries of the layer and in the regions where its thickness varies simply, 
an edge effect appears which cannot be examined in the two-dimensional approximation and de- 
mands therefore, in one way or another, the introduction of the three-dimensional equations of 
the filtration theory. At the distances from the layer edges equal to several times the layer 

*Prikl.Matem.Mekhan., 45,No.6,1142-1146,198l 

865 



866 I.A. Amiraslanov and G.P. Cherepanov 

thickness, the exact three-dimensional solution tends asymptotically to the approximate two- 

dimensional solution. The condition of smallness of the derivative mentioned above is obviou- 

sly equivalent to the equation (l-6), i.e. to the existence of a small number F. 

It is easily seen that the exact solution of the system (1.21, (1.3) differs from the 

exact solution of the corresponding three-dimensional problem of the theory of filtration,at 
a distance from the layer edge, by a quantity of the order of F>. An error of this magnitude 
appears in the formulation of the D'Arcy equations (1.3) for a layer of variable thickness. 

This can be verified directly by analyzing the exact solutions of the three-dimensional theory 

of filtration for the wedge-like and cone-like layers. Consequently the solution of the system 
of equations (1.21, (1.3) describes the state of the physical system (filtration in a layer of 

variable thickness), approximately, with an error of the order of ~2. We note that the 
quantity zly which doesnot appear in (1.2) and (1.31, is of the order of j_ 

Let us formulate the following problem. Is it not possible to find a new, simpler system 
of equations equivalent to the initial system (1.2), (1.3), within the limits of its accuracy 

in the sense that the solution of the new system will differ from the solution sought by a 

quantity of the order of $ . Obviously, in this case we can call the solution of the new 
system an 'Iexact" solution of the initial system insofar as its accuracy matches the accuracy 

of the initial system. We note that this concept can also be used in any approximatenumerical 

solutions of the boundary value problems of mathematical physics the too high accuracyofwhich 

is often unjustified by the approximate character of the initial equations. 

In the present case the equivalent system of equations is easily constructed using the 
method of small parameter. Suppose that we wish to obtain a solution of some particularbound- 
ary value problem for equation (1.5), assuming that such solution exists and is unique. We 

seek the solution of the problem in the form 

P 2 P" (a, P) I CPl (CT> P) (1.7) 

Here the unknown functions p 0 and pl are independent of F. We substitute the functions p and 

h given by (1.6) and (1.7) into (1.5), and equate the coefficients accompanying like powers 

of the small parameter F, neglecting terms of the order of $ and higher, the latter exce- 

eding the limits of accuracy of the initial equations. In the more general cases this simple 

procedure fails, since the small parameter accompanies the leading derivative. As a result we 

have 

(1.8) 

(1.9) 

Thus a system of equations equivalent to the initial equation (1.5) consists of two, similar 

type equations (1.8) and (1.9), differing from each other only in their right-hand parts. The 

first equation becomes identical to (1.5) when IL-h,=ronst, and the right-hand side of the 

second equation is determined by the solution of the first equation. The boundary conditions 

for these equations can be formulated with help of the boundary value problem. The fact that 

the resulting formulation is not unique, is clearly immaterial in determining the physically 

meaningful function P (a, B). 
The solutions of the boundary value problems for the system of equations (1.8), (1.9) can 

be obtained in quadratures, if the function generating the corresponding boundary valueproblem 

for the equation 

is known. The generating function for this equation can be found analytically for many cases 

of practical interest (plane, cylindrical and conical surfaces, sphere, "hollow" surfaces,etc.). 

In all these cases the principle of superposition can be used to write the solution of the in- 

itial boundary value problem for a curvilinear layer of variable thickness in the form of 

quadruple (double in simpler cases) integrals. The analytic solutions are of great practical 

interest, in particular in connection with the possibilities emerging for the subsequent ef- 

fective solutions of the optimization problems. 
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2. Plane layers of variable thickness. In the case of plane layers of variable 

thickness the equation (1.5) has the following form in the Cartesian zy -coordinates: 

~~\“~)+~\“dy)~-~g( i (2.1) 

Here 'p and W denote the angles formed by the z-axis with the z and y axes respectively (this 

time the z and y axes lie in the plane of the layer, and the z-axis is defined, as before,by 

the direction of the gravity force). A system of equations equivalent to the above equation 

has the form 

(2.2) 

(2.3) 

Thus the case in question has been reduced to two problems of the theory of harmonic potential, 

which can be solved one after the other. It follows therefore that many boundary value 

problems for (2.1) can be solved efficiently in quadratures using the proposed method. Approx- 

imately the same level of difficulty is encountered in the corresponding boundary value 

problems for the cylindrical, conical and generally developable surfaces, in connection with 

the fact that in this case the coefficients A and B will be constant. 

We see that the proposed method is essentially different from the standard methodofsmall 

parameter, the difference being as follows. The method of small parameter is an approximate 

method of solving "exact" equations, and the solution is obtained in the form of an infinite 

series in powers of the small parameter. The proposed method is an "exact" method of solving 

the same initial equations which are, however, already regarded as approximate. Estimationof 

the error present in these equations leads to conclusion that the "exact" solution has the 

form (1.7), i.e. it formally coincides with the first two terms of the expansion in terms of 

the small parameter. 

The standard method of small parameter is well known in the theory of filtration (see/l/). 
The flow of fluid in curvilinear layers was studied by many authors, with Golubeva in /2/ 

giving the greatest attention to these problems. 

3. Example. Let the middle surface of the layer be described by the following equations: 

Here a and 6 are positive parameters of the dimension of length. Equations (3.1) describe a 
cylindrical surface with the generatrices parallel to the y-axis. The transverse cross sec- 

tion of this surface represents a symmetric, lune-like curve in the OZZ plane, tending asymp- 
totically to the s-axis as z-t&m (see Fig.1). The variable fi clearly represents the arc 

length of this curve counted from the minimum point Z= 

0,~ =-b. The other orthogonal coordinate of the middle 

surface (a) can be regarded, without loss of generality, 
as equal to !I. The coefficients A and E will be equal 

to unity. 

Fig.1 

The equations (3.1) approximate sufficiently accur- 

ately the form of a geological Sold containingoil and gas 

deposits, provided that we choose the greatest depth of 
the fold as b, and approximately one sixth of the fold 
width as a (and replacing z by -2). Let the layer 
thickness be defined by 

Assume that a heavy fluid saturates the whole layer - OO<C~X,<+ DC,-- <fi<+- and a sink of 
the fluid of strength Q (the well) is present at the point z= O,y-@,z=-6, (i.e. at the 
coordinate origin of the c@-plane). We require to determine the pressure and filtration 
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rate fields in the layer. In the present case the pressure is given either by a single equa- 
tion 

or by the equivalent system of two equations 

(3.2) 

(3.3) 

It is doubtful whether a solution of (3.2) can be obtained in analytic form, in contrast to 
the solution of system (3.3). The Green's function for th.e Laplace equation has the form 
In [(a-Q + (b - ~0)1"' where a,, and b,, are the coordinates of the source (or sink). Hencewe can 
write the solution of system (3.3) in the following form 

(3.4) 

where P~is the pressure in the fluid at Q= 0 and B-km. 
The above solution can be regarded as an exact solution of equation (3.2) in the sense 

explained above. 
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